
www.manaraa.com

MonadTransformers andModular Interpreters�
Sheng Liang Paul Hudak Mark Jonesy

Yale University
Department of Computer Science
NewHaven, CT 06520-8285fliang,hudak,jones-markg@cs.yale.eduAbstract

We show how a set of building blocks can be used to construct
programming language interpreters, and present implemen-
tations of such building blocks capable of supporting many
commonly known features, including simple expressions,
three different function call mechanisms (call-by-name, call-
by-value and lazy evaluation), references and assignment,
nondeterminism, first-class continuations, and program trac-
ing.
The underlying mechanism of our system is monad trans-

formers, a simple form of abstraction for introducing a wide
range of computational behaviors, such as state, I/O, con-
tinuations, and exceptions.
Our work is significant in the following respects. First,

we have succeeded in designing a fully modular interpreter
based on monad transformers that includes features miss-
ing from Steele’s, Espinosa’s, and Wadler’s earlier efforts.
Second, we have found new ways to lift monad operations
through monad transformers, in particular difficult cases not
achieved in Moggi’s original work. Third, we have demon-
strated that interactions between features are reflected in
liftings and that semantics can be changed by reordering
monad transformers. Finally, we have implemented our
interpreter in Gofer, whose constructor classes provide just
the added power over Haskell’s type classes to allow precise
and convenient expression of our ideas. This implementa-
tion includes a method for constructing extensible unions
and a form of subtyping that is interesting in its own right.1 Introduction and Related Work
This paper discusses how to construct programming lan-
guage interpreters out of modular components. We will
show how an interpreter for a language with many features
can be composed from building blocks, each implementing�This work was supported by the Advanced Research Project Agency
and the Office of Naval Research under Arpa Order 8888, Contract
N00014-92-C-0153.yCurrent address: Department of Computer Science, University of
Nottingham, University Park, Nottingham NG7 2RD, England. Email:
mpj@cs.nott.ac.uk.

To appear in Conference Record of POPL’95: 22nd ACM
SIGPLAN-SIGACT Symposium on Principles of Program-
ming Languages, San Francisco, CA, January 1995.

a specific feature. The interpreter writer is able to specify
the set of incorporated features at a very high level.
The motivation for building modular interpreters is to

isolate the semantics of individual programming language
features for the purpose of better understanding, simplifying,
and implementing the features and their interactions. The
lack of separability of traditional denotational semantics [19]
has long been recognized. Algebraic approaches such as
Mosses’ action semantics [16], and related efforts by Lee
[13], Wand [23], Appel & Jim [1], Kelsey & Hudak [11], and
others, attempt to solve parts of this problem, but fall short

in several crucial ways.1

A ground-breaking attempt to better solve the overall
problem began with Moggi’s [15] proposal to use monads to
structure denotational semantics. Wadler [21] popularized
Moggi’s ideas in the functional programming community
by showing that many type constructors (such as List) were
monads and how monads could be used in a variety of
settings, many with an “imperative” feel (such as in Peyton
Jones & Wadler [17]). Wadler’s interpreter design, however,
treats the interpreter monad as a monolithic structure which
has to be reconstructed every time a new feature is added.
More recently, Steele [18] proposed pseudomonads as a way
to compose monads and thus build up an interpreter from
smaller parts, but he failed to properly incorporate important
features such as an environment and store, and struggled
with restrictions in the Haskell [7] type system when trying
to implement his ideas. In fact, pseudomonads are really
just a special kind of monad transformer, first suggested by
Moggi [15] as a potential way to leave a “hole” in a monad
for further extension.
Returning to Moggi’s original ideas, Espinosa [4] nicely

formulated in Scheme a system called Semantic Lego — the
first modular interpreter based on monad transformers —
and laid out the issues in lifting. Espinosa’s work reminded
the programming language community (including us) —
who had become distracted by the use of monads — that
Moggi himself, responsible in many ways for the interest in
monadic programming, had actually focussed more on the
importance of monad transformers.
We begin by realizing the limitations of Moggi’s frame-

work and Espinosa’s implementation, in particular the diffi-
culty in dealing with complicated operations such as callcc,
and investigate how common programming language fea-

1Very recently, Cartwright and Felleisen [3] have independently proposed
a modular semantics emphasizing a direct semantics approach, which seems
somewhat more complex than ours; the precise relationship between the
approaches is, however, not yet clear.

www.manaraa.com

type Term = OR TermA - - arithmetic(OR TermF - - functions(OR TermR - - assignment(OR TermL - - lazy evaluation(OR TermT - - tracing(OR TermC - - callcc
TermN - - nondeterminism))))) type InterpM = StateT Store - - memory cells(EnvT Env - - environment(ContT Answer - - continuations(StateT String - - trace output(ErrorT - - error reporting

List - - multiple results))))
type Value = OR Int (OR Fun ())

Figure 1: A modular interpreter

tures interact with each other. In so doing we are able to
express more modularity andmore language features than in
previous work, solving several open problems that arose not
only in Moggi’s work, but in Steele’s and Espinosa’s as well.
Our work also shares results with Jones and Duponcheel’s
[10] work on composing monads.
Independently, Espinosa [5] has continued working on

monad transformers, and has also recognized the limitations
of earlier approaches and proposed a solution quite different
from ours. His new approach relies on a notion of “higher-
order” monads (called situated monads) to relate different
layers of monad transformers, and he has investigated the
semantic implications of the order of monad transformer
composition. It is not yet clear how his new approach relates
to ours.
We useGofer [8] syntax, which is very similar to Haskell’s,

throughout the paper. We choose Gofer overHaskell because
of its extended type system, and we choose a functional
language over mathematical syntax for three reasons: (1)

it is just about as concise as mathematical syntax,2 (2)
it emphasizes the fact that our ideas are implementable
(and thus have been debugged!), and (3) it shows how the
relatively new idea of constructor classes [9] can be used
to represent some rather complex typing relationships. Of
course, monads can be expressed in a variety of other
(higher-order) programming languages, in particular SML
[14], whose type system is equally capable of expressing
some of our ideas. The system could also be expressed
in Scheme, but of course we would then lose the benefits
of strong static type-checking. Our Gofer source code is
available via anonymous ftp from nebula.cs.yale.edu in the
directory pub/yale-fp/modular-interpreter.
To appreciate the extent of our results, Figure 1 gives the

high-level definition of an interpreter, which is constructed
in a modular way, and supports arithmetic, three different
kinds of functions (call-by-name, call-by-value, and lazy),
references and assignment, nondeterminism, first-class con-
tinuations, and tracing. The rest of the paper will provide
the details of how the type declarations expand into a full
interpreter and how each component is built. For now just
note that OR is equivalent to the domain sum operator, and
Term, Value and InterpM denote the source-level terms, run-
time values, and supporting features (which can be regarded
as the run-time system), respectively. Int and Fun are the
semantic domains for integers and functions. TermA, TermF,
etc. are the abstract syntax for arithmetic terms, function

2Although (for lack of space) we do not include any proofs, all constructs
(monads, monad transformers and liftings) expressed as Gofer code have
been verified to satisfy the necessary properties stated in this paper.

expressions, etc. Type constructors such as StateT and ContT
are monad transformers; they add features, and are used to
transform the monad List into the monad InterpM used by
the interpreter.
To see how Term,Value, and InterpM constitute tomodular

interpreters, in the next section we will walk through some
simple examples.2 An Example
A conventional interpreter maps, say, a term, environment,
and store, to an answer. In contrast, a monadic interpreter
such as ours maps terms to computations, where the details
of the environment, store, etc. are “hidden”. Specifically:

interp :: Term! InterpM Value
where “InterpM Value” is the interpreter monad of final
answers.
What makes our interpreter modular is that all three

components above — the term type, the value type, and the
monad — are configurable. To illustrate, if we initially wish
to have an interpreter for a small arithmetic language, we
can fill in the definitions as follows:

type Value = OR Int ()
type Term = TermA
type InterpM = ErrorT Id

The first line declares the answer domain to be the union
of integers and the unit type (used as the base type). The
second line defines terms as TermA, the abstract syntax for
arithmetic operations. The final line defines the interpreter
monad as a transformation of the identify monad Id. The
monad transformer ErrorT accounts for the possibility of
errors; in this case, arithmetic exceptions.

At this point the interpreter behaves like a calculator: 3> ((1+ 4) � 8)
40> (3=0)
ERROR: divide by 0

Now if we wish to add function calls, we can extend the
value domain with function types, add the abstract syntax
for function calls to the term type, and apply the monad
transformer EnvT to introduce an environment Env.

type Value = OR Int (OR Fun ())
type Term = OR TermF TermA
type InterpM = EnvT Env (ErrorT Id)
3For lack of space, we omit the details of parsing and printing.

2

www.manaraa.com

Here is a test run:> ((nx:(x+ 4)) 7)
11> (x+ 4)
ERROR: unbound variable: x

By adding other features, we can arrive at (and go beyond)
the interpreter in Figure 1. In the process of adding new
source-level terms, whenever a new value domain (such as
Boolean) is needed, we extend the Value type, and to add a
new semantic feature (such as a store or continuation), we
apply the corresponding monad transformer.Why monads? In a sense, monads are nothing more than
a good example of data abstraction. But they just happen
to be a particularly good abstraction, and by using them in
a disciplined (and appropriate) way, we generally obtain
well-structured, modular programs. In our application, they
are surprisingly useful for individually capturing the essence
of a wide range of programming language features, while
abstracting away from low-level details. Then with monad
transformers we can put the individual features together,
piece-by-piece in different orders, to create full-featured
interpreters.3 The Constructor Class System
For readers not familiar with the Gofer type system (in
particular, constructor classes [9]), this section provides a
motivating example.
Constructor classes support abstraction of common fea-

tures among type constructors. Haskell, for example, pro-
vides the standard map function to apply a function to each
element of a given list:

map :: (a ! b) ! [a]! [b]
Meanwhile, we can define similar functions for a wide range
of other datatypes. For example:

data Tree a = Leaf aj Node (Tree a) (Tree a)
mapTree :: (a ! b) ! Tree a ! Tree b
mapTree f (Leaf x) = Leaf (f x)
mapTree f (Node l r) = Node (mapTree f l) (mapTree f r)
The mapTree function has similar type and functionality to
those of map. With this in mind, it seems a shame that we
have to usedifferent names for eachof these variants. Indeed,
Gofer allows type variables to stand for type constructors, on
which the Haskell type class system has been extended to
support overloading. To solve the problem withmap, we can
introduce a new constructor class Functor (in a categorical
sense):

class Functor f where
map :: (a ! b) ! f a ! f b

Now the standard list (List) and the user-defined type con-
structor Tree are both instances of Functor:

instance Functor List where
map f [] = []
map f (x : xs) = f x : map f xs

instance Functor Tree where
map f (Leaf x) = Leaf (f x)
map f (Node l r) = Node (map f l) (map f r)
In buildingmodular interpreters, wewill find constructor

classes extremely useful for dealing with multiple instances
of monads and monad transformers (which are all type
constructors).4 Extensible Union Types
We begin with a discussion of a key idea in our framework:
how values and terms may be expressed as extensible union
types. (This facility has nothing to do with monads.)
The disjoint union of two types is captured by the

datatype OR.

data OR a b = L a j R b
where L and R are used to perform the conventional injection
of a summand type into the union; conventional pattern-
matching is used for projection. However, such injections
and projections only work if we know the exact structure
of the union; in particular, an extensible union may be
arbitrarily nested, and we would like a single pair of injection
and projection functions to work on all such constructions.
To achieve this, we define a type class to capture the

summand/union type relationship, which we refer to as a
“subtype” relationship:

class SubType sub sup where
inj :: sub! sup - - injection
prj :: sup! Maybe sub - - projection

dataMaybe a = Just a j Nothing
The Maybe datatype is used because the projection function
may fail. We can now express the relationships that we
desire:

instance SubType a (OR a b) where
inj = L
prj (L x) = Just x
prj = Nothing

instance SubType a b) SubType a (OR c b) where
inj = R � inj
prj (R a) = prj a
prj = Nothing

Now we can see, for example, how the Value domain
used in the interpreter example given earlier is actually
constructed:

type Value = OR Int (OR Fun ())
type Fun = InterpM Value! InterpM Value
With thesedefinitions theGofer type systemwill infer that Int
and Function are both “subtypes” of Value, and the coercion

functions inj and prj will be generated automatically.4 (Note
that the representation of a function is quite general — it
maps computations to computations. As will be seen, this
generality allows us to model both call-by-name and call-by-
value semantics.)

4We should point out here that most of the typing problems Steele
encountered disappear with the use of our extensible union types; in
particular, there is no need for Steele’s “towers” of datatypes.

3

www.manaraa.com

5 The Interpreter Building Blocks
As in the example of Section 2, the Term type is also
constructed as an extensible union (of subterm types). We
define additionally a class InterpC to characterize the term
types that we wish to interpret:

class InterpC t where
interp :: t! InterpM Value

The behavior of interp on unions of terms is given in the
obvious way:

instance (InterpC t1; InterpC t2))
InterpC (OR t1 t2) where

interp (L t) = interp t
interp (R t) = interp t

The interp function mentioned in the opening example is just
the method associated with the top-level type Term.
In the remainder of this section we define several repre-

sentative interpreter building blocks, each an instance of class
InterpC and written in a monadic style. We will more for-
mally define monads later, but for now we note that the
interpreter monad InterpM comes equipped with two basic
operations:

unit :: a ! InterpM a
bind :: InterpM a ! (a ! InterpM b) ! InterpM b
Intuitively, InterpM a denotes a computation returning a
result of type a. “Unit x” is a null computation that just
returns x as result, whereas “m ‘bind‘ k” runs m and passes
the result to the rest of the computation k. As will be seen,
besides unit and bind, each interpreter building block has
several other operations that are specific to its purpose.5.1 The Arithmetic Building Block
Our (very tiny) arithmetic sublanguage is given by:

data TermA = Num Intj Add Term Term

whose monadic interpretation is given by:

instance InterpC TermAwhere
interp (Num x) = unitInj x
interp (Add x y) = interp x ‘bindPrj‘ ni !

interp y ‘bindPrj‘ nj !
unitInj ((i+ j) :: Int)

unitInj = unit � injm ‘bindPrj‘ k =m ‘bind‘ na !
case (prj a) of

Just x ! k x
Nothing ! err "run-time type error"

err :: String! InterpM a - - defined later

Note the simple use of inj and prj to inject/project the integer
result into/out of the Value domain, regardless of how Value
is eventually defined (unitInj and bindPrj make this a tad
easier, and will be used later as well). Err is an operation for
reporting errors to be defined later.

5.2 The Function Building Block
Our “function” sublanguage is given by:

data TermF = Var Namej LambdaN Name Term - - cbnj LambdaV Name Term - - cbvj App Term Term

which supports two kinds of abstractions, one for call-by-
name, the other for call-by-value.
We assume a type Env of environments that associates

variable names with computations (corresponding to the
“closure” mode of evaluation [2]), and that has two opera-
tions:

lookupEnv :: Name! Env! Maybe (InterpM Value)
extendEnv :: (Name; InterpM Value)! Env! Env
type Name = String

In addition, we will define later two monadic operations,
rdEnv and inEnv, that return the current environment and
perform a computation in a given environment, respectively:

rdEnv :: InterpM Env
inEnv :: Env! InterpM a ! InterpM a
The interpretation of the applicative sublanguage is then
given in Figure 2.
The difference between call-by-value and call-by-name

is clear: the former reduces the argument before evaluating
the function body, whereas the latter does not. In a function
application, the function itself is evaluated first, and bindPrj
checks if it is indeed a function. The computation of e2
is packaged up with the current environment to form a
closure, which is then passed to f . We could just as easily
realize dynamic scoping by passing not the closure, but the
computation of e2 alone.
When applying a call-by-value function, we build a com-

putation which gets evaluated immediately upon entering
the function body. Although semantically correct, this does
not correspond to an efficient implementation. In practice,
however, we expect that the presence of some kind of type
information or a special syntax for call-by-value application
will enable us to optimize away this overhead.
We note that Steele felt it unsatisfactory that his inter-

preter always had an environment argument, even though it
was only used in the function building block. By abstracting
environment-related operations as two functions (inEnv and
rdEnv), we achieve exactly what Steele wished for.5.3 The References and Assignment Building Block
A sublanguage of references and assignment is given by:

data TermR = Ref Termj Deref Termj Assign Term Term

Given a heap of memory cells and three functions for
managing it:

allocLoc :: InterpM Loc
lookupLoc :: Loc! InterpM Value
updateLoc :: (Loc; InterpM Value) ! InterpM ()
type Loc = Int

we can then give an appropriate interpretation to the new
language features:

4

www.manaraa.com

instance InterpC TermFwhere
interp (Var v) = rdEnv ‘bind‘ nenv!

case lookupEnv v env of
Just val ! val
Nothing ! err ("unbound variable: " ++ v)

interp (LambdaN s t) = rdEnv ‘bind‘ nenv!
unitInj (narg! inEnv (extendEnv (s; arg) env) (interp t))

interp (LambdaV s t) = rdEnv ‘bind‘ nenv!
unitInj (narg! arg ‘bind‘ nv !

inEnv (extendEnv (s; unit v) env) (interp t))
interp (App e1 e2) = interp e1 ‘bindPrj‘ nf !

rdEnv ‘bind‘ nenv!f (inEnv env (interp e2))
Figure 2: The function building block

instance InterpC TermRwhere
interp (Ref x) =

interp x ‘bind‘ nval!
allocLoc ‘bind‘ nloc!
updateLoc (loc; unit val) ‘bind‘ n !
unitInj loc

interp (Deref x) =
interp x ‘bindPrj‘ nloc!
lookupLoc loc

interp (Assign lhs rhs) =
interp lhs ‘bindPrj‘ nloc!
interp rhs ‘bind‘ nval!
updateLoc (loc; unit val) ‘bind‘ n !
unit val5.4 A Lazy Evaluation Building Block

Using this same heap of memory cells for references, we can
implement “lazy” abstractions:

data TermL = LambdaL Name Term

whose operational semantics implies “caching” of results.

instance InterpC TermLwhere
interp (LambdaL s t) =
rdEnv ‘bind‘ nenv!
unitInj (narg!
allocLoc ‘bind‘ nloc!
let thunk = arg ‘bind‘ nv !

updateLoc (loc; unit v) ‘bind‘ n !
unit v

in
updateLoc (loc; thunk) ‘bind‘ n !
inEnv (extendEnv (s; lookupLoc loc) env)(interp t))

Upon entering a lazy function, the interpreter first allocates
a memory cell and stores a thunk (updatable closure) in it.
When the argument is first evaluated in the function body,
the interpreter evaluates the thunk and stores the result back
into the memory cell, overwriting the thunk itself.

5.5 A Program Tracing Building Block
Given a function:

write :: String! InterpM ()
which writes a string output and continues the computation,
we can define a “tracing” sublanguage,which attaches labels
to expressions which cause a “trace record” to be invoked
whenever that expression is evaluated:

data TermT = Trace String Term
instance InterpC TermTwhere
interp (Trace l t) =
write ("enter " ++ l) ‘bind‘ n !
interp t ‘bind‘ nv !
write ("leave " ++ l ++ " with:" ++ show v) ‘bind‘ n !
unit v

Here we see that some of the features in Kishon et al.’s
system [12] are easily incorporated into our interpreter.5.6 The Continuation Building Block
First-class continuations can be included in our language
with:

data TermC = CallCC

Using the callcc semantic function (to be defined later):

callcc :: ((a ! InterpM b) ! InterpM a) ! InterpM a
we can give an interpretation for CallCC:

instance InterpC TermCwhere
interp CallCC = unitInj (nf !f ‘bindPrj‘ nf 0 !
callcc (nk ! (f 0 (unitInj (na ! a ‘bind‘ k)))))

CallCC is interpreted as a (strict) builtin function. Interp in
this case does nothing more than inject and project values to
the right domains.

5

www.manaraa.com

Feature Function

Error handling err :: String! InterpM a
Nondeterminism merge :: [InterpM a]! InterpM a
Environment rdEnv :: InterpM Env

inEnv :: Env! InterpM a! InterpM a
Store allocLoc :: InterpM Int

lookupLoc :: Int! InterpM Value
updateLoc :: (Int, InterpM Value)! InterpM Int

String output write :: String! InterpM ()
Continuations callcc :: ((a! InterpM b)! InterpM a)! InterpM a

Table 1: Monad operations used by the interpreter5.7 The Nondeterminism Building Block
Our nondeterministic sublanguage is given by:

data TermN = Amb [Term]
Given a function:

merge :: [InterpM a]! InterpM a
which merges a list of computations into a single (nondeter-
ministic) computation, nondeterminism interpretation can
be expressed as:

instance InterpC TermNwhere
interp (Amb t) = merge (map interp t)6 Monads With Operations

As mentioned earlier, particular monads have other opera-
tions besides unit and bind. Indeed, from the last section, it
is clear that operations listed in Table 1 must be supported.
If we were building an interpreter in the traditional way,

now is the time to set up the domains and implement the
functions listed in the table. The major drawback of this
monolithic approach is that we have to take into account all
other features when we define an operation for one specific
feature. When we define callcc, for example, we have to
decide how it interacts with the store and environment etc.
And if we later want to add more features, the semantic
domains and all the functions in the table will have to be
updated.
Monad transformers, on the other hand, allowus to individ-

ually capture the essence of language features. Furthermore,
the concept of lifting allows us to account for the interactions
between various features. These are the topics of the next
two sections.
To simplify the set of operations somewhat, we note that

both the store and output (used by the tracer) have to do
with some notion of state. Thus we define allocLoc, lookupLoc,
updateLoc, and write in terms of just one function:

update :: (s! s) ! InterpM s
for some suitably chosen s. We can read the state by passing
update the identity function, and change the state by passing
it a state transformer. For example:

write msg = update (n sofar! sofar ++ msg)
‘bind‘ n ! unit ()

7 Monad Transformers
To get an intuitive feel for monad transformers, consider
the merging of a state monad with an arbitrary monad, an
example adapted from Jones’s constructor class paper [9]:

type StateT s m a = s ! m (s; a)
Note that the type variable m above stands for a type
constructor, a fact automatically determined by the Gofer
kind inference system. It turns out that if m is a monad, so

is “StateT s m”.5 “StateT s” is thus a monad transformer.
For example, if we substitute the identity monad:

type Id a = a
for m in the above monad transformer, we arrive at:

StateT s Id a = s ! Id (s;a)= s ! (s; a)
which is the standard state monad found, for example, in
Wadler’s work [21].
The power of monad transformers is two-fold. First, they

add operations (i.e. introduce new features) to a monad. The
StateTmonad transformer above, for example, adds state s to
the monad it is applied to, and the resulting monad accepts
update as a legitimate operation on it.
Second, monad transformers compose easily. For exam-

ple, applying both “StateT s” and “StateT t” to the identity
monad, we get:

StateT t (StateT s Id) a = t ! (StateT s Id) (t; a)= t ! s ! (s; (t; a))
which is the expected type signature for transforming both
states s and t. The observant reader will note, however,
an immediate problem: in the resulting monad, which state
does update act upon? In general, this is the problem of
lifting monad operations through transformers, and will
be addressed in detail later. But first we define monads
and monad transformers more formally, and then describe
monad transformers covering the features listed in Section
5.
We can formally define monads as follows:

5In fact “StateT s m” is only legal in the current version of Gofer if StateT
is a datatype rather than a type synonym. This does not limit our results,
but does introduce superfluous data constructors that slightly complicate
the presentation, so we will use type declarations as if they worked as data
declarations.

6

www.manaraa.com

classMonadm where
unit :: a ! m a
bind :: m a ! (a ! m b) ! m b
map :: (a ! b) ! m a ! m b
join :: m (m a) ! m a
map f m = m ‘bind‘ na ! unit (f a)
join z = z ‘bind‘ id

The two functions map and join, together with unit provide
an equivalent definition of monads, but are easily defined
(as default methods) in terms of bind and unit.
To be a monad, bind and unitmust satisfy the well-known

Monad Laws [21]:

Left unit: (unit a) ‘bind‘ k = k a
Right unit: m ‘bind‘ unit = m
Associativity:m ‘bind‘ na ! (k a ‘bind‘ h) = (m ‘bind‘ k) ‘bind‘ h
We define a monad transformer as any type constructor t
such that if m is a monad (based on the above laws), so
is “t m”. We can express this (other than the verification
of the laws, which is generally undecidable) using the two-
parameter constructor classMonadT:

class (Monadm; Monad (t m))) MonadT t m where
lift :: m a ! t m a

The member function lift embeds a computation in monad
m into monad “t m”. Furthermore, we expect a monad
transformer to add features, without changing the nature of
an existing computation. We introduce Monad Transformer
Laws to capture the properties of lift:

lift � unitm = unittm
lift (m ‘bindm‘ k) = lift m ‘bindtm‘ (lift � k)
The above laws say that lifting a null computation results

in a null computation, and that lifting a sequence of com-
putations is equivalent to first lifting them individually, and
then combining them in the lifted monad.
Specificmonad transformers are described in the remain-

der of this section. Some of these (StateT, ContT, and ErrorT)
appear in an abstract form in Moggi’s note [15]. The envi-
ronment monad is similar to the state reader by Wadler [22].
The state and environmentmonad transformers are related to
ideas found in Jones and Duponcheel’s [9] [10] work.7.1 State Monad Transformer
Recall the definition of state monad transformer StateT:

type StateT s m a = s ! m (s; a)
Using instance declarations, we now wish to declare both
that “StateT s m” is a monad (given m is a monad), and that
“StateT s” is a monad transformer (for each of the monad
transformers defined in subsequent subsections, we will do
exactly the same thing).
First, we establish the monad definition for “StateT s m”,

involving methods for unit and bind:

instanceMonadm) Monad (StateT s m) where
unit x = ns ! unit (s; x)m ‘bind‘ k = ns0 ! m s0 ‘bind‘ n(s1; a) !k a s1

Note that these definitions are not recursive; the constructor
class system automatically infers that the bind and unit
appearing on the right are for monad m.
Next, we define “StateT s” as a monad transformer:

instance (Monadm; Monad (StateT s m)))
MonadT (StateT s) m where

lift m = ns ! m ‘bind‘ nx ! unit (s; x)
Note that lift simply runs m in the new context, while
preserving the state.
Finally, as explained earlier, a state monad must support

the operation update. To keep things modular, we define a
class of state monads:

classMonadm) StateMonad s m where
update :: (s! s) ! m s

In particular, “StateT s” transforms any monad into a state
monad, where “update f ” applies f to the state, and returns
the old state:

instanceMonadm) StateMonad s (StateT s m) where
update f = ns ! unit (f s; s)7.2 Environment Monad Transformer

“EnvT r” transforms anymonad into an environmentmonad.
The definition of bind tells us that two subsequent compu-
tation steps run under the same environment r. (Compare
this with the state monad, where the second computation
is run in the state returned by the first computation.) Lift
just performs a computation — which cannot depend on the
environment — and ignores the environment. InEnv ignores
the environment carried inside the monad, and performs the
computation in a given environment.

type EnvT r m a = r ! m a
instanceMonadm) Monad (EnvT r m) where
unit a = nr ! unit am ‘bind‘ k = nr ! m r ‘bind‘ na ! k a r

instance (Monadm; Monad (EnvT r m)))
MonadT (EnvT r) m where

lift m = nr ! m
classMonadm) EnvMonad env m where
inEnv :: env! m a ! m a
rdEnv :: m env

instanceMonadm) EnvMonad r (EnvT r m) where
inEnv r m = n ! m r
rdEnv = nr ! unit r7.3 Error Monad Transformer

Monad Error completes a series of computations if all suc-
ceed, or aborts as soon as an error occurs. The monad
transformer ErrorT transforms a monad into an error monad.

data Error a = Ok a j Error String
type ErrorTm a = m (Error a)

7

www.manaraa.com

instanceMonad m) Monad (ErrorTm) where
unit = unit �Okm ‘bind‘ k =m ‘bind‘ na !
case a of(Ok x) ! k x(Error msg) ! unit (Error msg)

instance (Monadm; Monad (ErrorTm)))
MonadT ErrorTm where

lift = map unit

classMonadm) ErrMonadm where
err :: String! m a

instanceMonad m) ErrMonad (ErrorTm) where
err = unit � Error7.4 ContinuationMonad Transformer

We define the continuation monad transformer as:

type ContT ansm a = (a ! m ans) ! m ans
instanceMonad m) Monad (ContT ans m) where
unit x = nk ! k xm ‘bind‘ f = nk ! m (na ! f a k)

ContT introduces an additional continuation argument (of
type “a! m ans”), and by the above definitions of unit and
bind, all computations in monad “ContT ans m” are carried
out in a continuation passing style.
Lift for “Cont ans m” turns out to be the same as bind for

m. (It is easy to see this from the type signature.) “Callcc
f ” invokes the computation in f, passing it a continuation
that once applied, throws away the current continuation
(denoted as “ ”) and invokes the captured continuation k.

instance (Monadm; Monad (ContT ansm)))
MonadT (ContT ans) m where

lift = bind

classMonadm) ContMonadm where
callcc :: ((a ! m b) ! m a) ! m a

instanceMonad m) ContMonad (ContT ansm) where
callcc f = nk ! f (na ! n ! k a) k7.5 The List Monad

Jones and Duponcheel [10] have shown that lists compose
with special kinds of monads called commutative monads. It
is not clear, however, if lists compose with arbitrarymonads.
Sincemany usefulmonads (e.g. state, error and continuation
monads) are not commutative, we cannot define a list monad
transformer — one which adds the operation merge to any
monad.
Fortunately, every other monad transformer we have

considered in this paper takes arbitrary monads. We thus
use lists as the base monad, upon which other transformers
can be applied.

instanceMonad List where
unit x = [x][] ‘bind‘ k = [](x : xs) ‘bind‘ k = k x ++ (xs ‘bind‘ k)

classMonadm) ListMonadm where
merge :: [m a]! m a

instance ListMonad List where
merge = concat8 Lifting Operations

We have introduced monad transformers that add useful
operations to a given monad, but have not addressed how
these operations can be carried through other layers of
monad transformers, or equivalently, how a monad trans-
former lifts existing operations within a monad.
Lifting an operation f in monad m through a monad

transformer t results in an operation whose type signature
can be derived by substituting all occurrences of m in the
type of f with “t m”. For example, lifting “inEnv :: r ! m a! m a” through t results in an operation with type “r! t m
a! t m a.”
Given the types of operations in monad m:� ::= A (type constants)j a (type variables)j � ! � (function types)j (�; �) (product types)j m � (monad types)det is the mapping of types across the monad transformer t:dAet = Adaet = ad�1 ! �2et = d�1et ! d�2etd(�1; �2)et = (d�1et; d�2et)dm �et = t m d�et
Moggi [15] studied the problem of lifting under a categor-

ical context. The objective was to identify liftable operations
from their type signatures. Unfortunately, many useful oper-
ations such as merge, inEnv and callcc failed to meet Moggi’s
criteria, and were left unsolved.
We individually consider how to lift these difficult cases.

This allows us to make use of their definitions (rather than
just the types), and find ways to lift them through all monad
transformers studied so far.
This is exactly where monad transformers provide us

with an opportunity to study how various programming
language features interact. The easy-to-lift cases correspond
to features that are independent in nature, and the more
involved cases require a deeper analysis of monad structures
in order to clarify the semantics.
An unfortunate consequenceof our approach is that aswe

consider more monad transformers, the number of possible
liftings grows quadratically. It seems, however, that there
are not too many different kinds of monad transformers
(although there may be many instances of the same monad
transformer such as StateT). What we introduced so far
are able to model almost all commonly known features of
sequential languages. Even so, not all of them are strictly
necessary. The environment, for example, can be simulated
using a state monad:

instance (Monad m;StateMonad r m))
EnvMonad r m where

inEnv r m = update (n ! r) ‘bind‘ no!m ‘bind‘ nv !
update (n ! o) ‘bind‘ n !
unit v

rdEnv = update id

8

www.manaraa.com

Also, as is well known, error reporting can be implemented
using callcc.8.1 Correctness Criteria
The basic requirement of lifting is that any program which
does not use the added features should behave in the same
way after a monad transformer is applied. The monad trans-
former laws introduced in Section 7 are meant to guarantee
such property for lifting a single computation. Most monad
operations, however, have more general types. To deal
with operations on arbitrary types, we extend Moggi’s corre-
sponding categorical approach, and define L� as the natural
lifting of operations of type � along the monad transformer
t: L� :: � ! d�etLA = id (1)La = id (2)L�1!�2 = nf ! f 0 such thatf 0 � L�1 = L�2 � f (3)L(�1;�2) = n(a; b) ! (L�1 a;L�2 b) (4)Lm � = lift � (map L�) (5)
Constant types (such as Integer) and type variables do not

depend on any particular monad. (See cases 1 and 2.) On
the other hand, we expect a lifted function, when applied
to a value lifted from the domain of the original function,
to return the lifting of the result of applying the original
function to the unlifted value. This relationship is precisely
captured by equation 3, which corresponds to the following
commuting diagram:d�1et d�2et�1 �2-f 0 -f6L�1 6L�2
The lifting of tuples is straightforward. Finally, the lift
operator come with the monad transformer lifts computa-
tions expressed in monad types. Note that L� is mapped
to the result of the computation, which may involve other
computations.
Note that the above does not provide a Gofer definition

for an overloaded lifting function L. The “such that” clause
in the third equation specifies a constraint, rather than a
definition of f 0. In practice, we first find out by hand how
to lift an operation through a certain (or a class of) monad
transformer, and then use the above equations to verify
that such a lifting is indeed natural. Generally we require
operations to be lifted naturally — although as will be seen,
certain unnatural liftings change the semantics in interesting
ways.8.2 Easy Cases
Err and update are handled by lift, whereas merge benefits
from List being the base monad.

instance (ErrMonadm; MonadT t m))
ErrMonad (t m) where

err = lift � err

instance (StateMonadm; MonadT t m))
StateMonad (t m) where

update = lift � update
instanceMonadT t List) ListMonad (t List) where
merge = join � lift8.3 Lifting Callcc

The following lifting of callcc through EnvT discards the
current environment r’ upon invoking the captured contin-
uation k. The execution will continue in the environment r
captured when callcc was first invoked.

instance (MonadT (EnvT r) m; ContMonadm))
ContMonad (EnvT r m) where

- - callcc :: ((a ! r ! m b) ! r ! m a) ! r ! m a
callcc f = nr ! callcc (nk ! f (na ! nr0 ! k a) r)
The Appendix shows that if we flip the order of monad

transformers and apply ContT to “EnvT env m” — in which
case no lifting of callcc will be necessary — the current
environment will be passed to the continuation. (We will
see how to fix this by carefully recovering the environment
when we lift inEnv in a moment.)
In general we can swap the order of some monad trans-

formers (such as between StateT and EnvT), but doing so
to others (such as ContT) may effect semantics. This is
consistent with Filinski’s observations [6], and, in practice,
provides us an opportunity to fine tune the resulting seman-
tics.
In lifting callcc through “StateT s”, we have a choice of

passing either the current state s1 or the captured state s0.
The former is the usual semantics for callcc, and the latter is
useful in Tolmach and Appel’s approach to debugging [20].

instance (MonadT (StateT s) m; ContMonadm))
ContMonad (StateT s m) where

- - callcc :: ((a ! s ! m (s; b)) ! s ! m (s; a))! s ! m (s; a)
callcc f = ns0 ! callcc (nk !f (na ! ns1 ! k (s1; a)) s0)
The above shows the usual callcc semantics, and can be

changed to the “debugging” version by instead passing (s0,
a) to k.
The lifting of inEnv through ErrorT can be found in the

Appendix.8.4 Lifting InEnv
We only consider lifting inEnv through ContT here; the
Appendix shows how to lift inEnv through other monad
transformers.

instance (MonadT (ContT ans) m; EnvMonad r m))
EnvMonad r (ContT ansm) where

inEnv r c = nk ! rdEnv ‘bind‘ no !
inEnv r (c (inEnv o � k))

rdEnv = lift rdEnv

We restore the environment before invoking the continu-
ation, sort of like popping arguments off the stack. On the
other hand, an interesting (but not natural) way to lift inEnv
is:

9

www.manaraa.com

instance (MonadT (ContT ans) m; EnvMonad r m))
EnvMonad r (ContT ansm) where

inEnv r c = nk ! inEnv r (c k)
rdEnv = lift rdEnv

Here the environment is not restored when c invokes k,
and thus reflects the history of dynamic execution.9 Conclusions
We have shown how a modular monadic interpreter can
be designed using two key ideas: extensible union types
and monad transformers, and implemented using constructor
classes. A key technical problem that we had to overcome
was the lifting of operations through monads. Our ap-
proach also helps to clarify the interactions between various
programming language features.
This paper realized Moggi’s idea of a modular presen-

tation of denotational semantics for complicated languages,
and is much cleaner than the traditional approach [19]. On
the practical side, our results provide new insights into
designing and implementing programming languages, in
particular, extensible languages, which allow the program-
mer to specify new features on top of existing ones.Acknowledgements
We thank Dan Rabin, Zhong Shao, Rajiv Mirani and anony-
mous referees for helpful suggestions.References
[1] Andrew W. Appel and Trevor Jim. Continuation-
passing, closure-passing style. In ACM Symposium on
Principles of Programming Languages, pages 193–302, Jan-
uary 1989.

[2] Adrienne Bloss, Paul Hudak, and Jonathan Young.
Code optimization for lazy evaluation. Lisp and Symbolic
Computation, 1(1):147–164, 1988.

[3] Robert Cartwright and Matthias Felleisen. Extensible
denotational semantics. In Proceedings of Symposium on
Theoretical Aspects of Computer Software, pages 244–272,
1994.

[4] David Espinosa. Modular denotational semantics. Un-
published manuscript, December 1993.

[5] David Espinosa. Building interpreters by transforming
stratified monads. Unpublished manuscript, ftp from
altdorf.ai.mit.edu:pub/dae, June 1994.

[6] Andrzej Filinski. Representing monads. In Conference
Record of POPL ’94: 21st ACM SIGPLAN-SIGACT Sym-
posium on Principles of Programming Languages, Portland,
Oregon, pages 446–457, New York, January 1994. ACM
Press.

[7] Paul Hudak, Simon Peyton Jones, and Philip Wadler.
Report on the programming language Haskell: a non-
strict, purely functional language, version 1.2. Technical
Report YALEU/DCS/RR-777, Yale University Depart-
ment of Computer Science, March 1992. Also in ACM
SIGPLANNotices, Vol. 27(5), May 1992.

[8] Mark P. Jones. Introduction to gofer 2.20. Ftp from
nebula.cs.yale.edu in the directory pub/haskell/gofer,
September 1991.

[9] Mark P. Jones. A system of constructor classes: Over-
loading and implicit higher-order polymorphism. In
FPCA ’93: Conference on Functional Programming Lan-
guages and Computer Architecture, Copenhagen, Denmark,
pages 52–61, New York, June 1993. ACM Press.

[10] Mark P. Jones and Luc Duponcheel. Composing mon-
ads. Research Report YALEU/DCS/RR-1004, Yale Uni-
versity Department of Computer Science, New Haven,
Connecticut, December 1993.

[11] Richard Kelsey and Paul Hudak. Realistic compilation
by program transformation. InACMSymposiumonPrin-
ciples of Programming Languages, pages 181–192, January
1989.

[12] Amir Kishon, Paul Hudak, and Charles Consel. Mon-
itoring semantics: A formal framework for specifying,
implementing and reasoning about execution monitors.
In Proceedings of the ACM SIGPLAN ’91 Conference on
Programming Language Design and Implementation, pages
338–352, June 1991.

[13] Peter Lee. Realistic Compiler Generation. Foundations of
Computing. MIT Press, 1989.

[14] Robin Milner, Mads Tofte, and Robert Harper. The
Definition of Standard ML. MIT Press, 1990.

[15] Eugenio Moggi. An abstract view of programming lan-
guages. Technical Report ECS-LFCS-90-113, Laboratory
for Foundations of Computer Science, University of
Edinburgh, Edinburgh, Scotland, 1990.

[16] Peter D. Mosses. A basic abstract semantic alge-
bra. In Gilles Kahn, David B. MacQueen, and Gor-
don D. Plotkin, editors, Semantics of Data Types: Interna-
tional Symposium, Sophia-Antipolis, France, pages 87–107.
Springer-Verlag, June 1984. Lecture Notes in Computer
Science 173.

[17] Simon Peyton Jones and Philip Wadler. Imperative
functional programming. In Proceedings 20th Symposium
on Principles of Programming Languages, pages 71–84.
ACM, January 1993.

[18] Guy L. Steele Jr. Building interpreters by composing
monads. In Conference Record of POPL ’94: 21st ACM
SIGPLAN-SIGACT Symposium on Principles of Program-
ming Languages, Portland, Oregon, pages 472–492, New
York, January 1994. ACM Press.

[19] Joseph Stoy. Denotational Semantics: The Scott-Strachey
Approach to Programming Language Theory. MIT Press,
1977.

[20] Andrew P. Tolmach and AndrewW. Appel. Debugging
standard ML without reverse engineering. In Proceed-
ings of the 1990 ACM Conference on Lisp and Functional
Programming, Nice, France, June 1990.

[21] Philip Wadler. The essence of functional program-
ming. In Conference Record of the Nineteenth Annual
ACM Symposium on Principles of Programming Languages,
Albuquerque, New Mexico, pages 1–14, January 1992.

10

www.manaraa.com

[22] Philip L. Wadler. Comprehending monads. In Proceed-
ings of the 1990 ACM Conference on Lisp and Functional
Programming, 1990.

[23] Mitchell Wand. A semantic prototyping system. SIG-
PLANNotices, ACMSymposiumonCompiler Construction,
19(6):213–221, 1984.A The Ordering of ContT and EnvT

It is interesting to compare the following two callcc functions
on monad M and N, both composed from “ContT ans” and
“EnvT m”, but in different order.

Case 1:

typeM a = ContT ans (EnvT r m) a= (a ! r ! m ans)! r ! m ans
callcc f = nk ! f (na ! n ! k a) k

(eta convert nr and nr0)= nk ! nr ! f (na ! n ! nr0 ! k a r0) k r
Case 2:

typeM a = EnvT r (ContT ans m) a= r ! (a ! m ans)! m ans
callcc f = nr ! callcc (nk ! f (na ! nr0 ! k a) r)= nr ! nk ! (nk0 ! f (na ! nr0 ! k0 a) r)(na ! n ! k a) k= nr ! nk ! f (na ! nr0 ! n ! k a) r k
From the expansion of type M in case 1, we can see that

both result and environment are passed to the continuation.
When callcc invokes a continuation, it passes the current,
rather than the captured continuation. The callcc function in
case 2 works in the opposite way.B Lifting Callcc through ErrorT
instance (MonadT ErrorT m; ContMonadm))

ContMonad (ErrorTm) where
- - callcc :: ((a ! m (Error a))! m (Error a))
- - ! m (Error a)
callcc f = callcc (nk ! f (na ! k (Ok a)))C Lifting InEnv through EnvT, StateT and ErrorT

instance (MonadT (EnvT r0) m; EnvMonad r m))
EnvMonad r (EnvT r0 m) where

inEnv r m = nr0 ! inEnv r (m r0)
rdEnv = lift rdEnv

instance (MonadT (StateT s) m; EnvMonad r m))
EnvMonad r (StateT s m) where

inEnv r m = ns ! inEnv r (m s)
rdEnv = lift rdEnv

A function of type “m a ! m a” maps “m (Error a)” to
“m (Error a)”, thus inEnv stays the same after being lifted
through ErrorT.

11

